Speaker:
Yi Zhou (University of Electronic Science and Technology of China)
Host:
Management School in Northwestern Polytechnical University
Time:
- 19:00 (Time in Beijing)
- June 2, 2022 (Thursday)
Venue:
Online, Tencent Meeting: 969 244 436
Abstract:
松弛团指的是近似完全图的图结构,是图论和组合优化领域的经典模型。松弛团模型在数据挖掘,人工智能领域有着重要的应用,而如何从大规模的图中挖掘大型松弛团则是这类应用均需解决共性问题。在本次报告中,我们将从算法工程的角度来介绍松弛团挖掘问题的分析和求解。具体来说,我们将介绍松弛团问题的背景、应用并重点介绍基于分支算法的松弛团问题理论及实践。我们还将以k-plex,最密子图等松弛团为例,介绍这类问题的当前最新的优化结果。