理论计算机科学


优秀博士生论坛 2021

中国·成都

Chengdu, 25 - 27 June, 2021

第二届CCF理论计算机科学全国优秀博士生论坛和2021电子科技大学全国计算机优秀博士生论坛将于2021年6月25-27日举行。论坛承办单位为中国计算机学会理论计算机科学专委会和电子科技大学计算机科学与工程学院。

论坛采用线上线下混合形式开展。26日以线上报告为主,27日主要是来自成都本地的博士生报告,线上线下同时进行,线下地点为电子科技大学清水河校区图书馆百学堂。非来自成都的参会者建议全程线上参会。成都当地的参会者可以选择27日来电子科技大学线下参会。

论坛旨在为计算机科学及相关领域的优秀学生提供一个互相交流、学习的平台。本次论坛有幸邀请到了国内外不同高校的18位优秀博士生报告。热烈欢迎感兴趣的老师和同学届时莅临。

联系我们: 胡婧雅老师:freya016[at]outlook.com 白天(学生负责人):tian.bai.tcs[at]foxmail.com

会议信息

会议日程 PDF

会议日程(2021/6/26)
主持人:肖鸣宇
9:00 - 9:10大会开幕式
1. CCF TCS专委会主任孙晓明研究员致辞
2. 电子科技大学校领导致辞
主持人:风维明
9:10 - 9:40杜伊涵
清华大学
题目: Combinatorial Pure Exploration for Dueling Bandits
摘要: In this paper, we study combinatorial pure exploration for dueling bandits (CPE-DB): we have multiple candidates for multiple positions as modeled by a bipartite graph, and in each round we sample a duel of two candidates on one position and observe who wins in the duel, with the goal of finding the best candidate-position matching with high probability after multiple rounds of samples. CPE-DB is an adaptation of the original combinatorial pure exploration for multi-armed bandit (CPE-MAB) problem to the dueling bandit setting. We consider both the Borda winner and the Condorcet winner cases. For Borda winner, we establish a reduction of the problem to the original CPE-MAB setting and design PAC and exact algorithms that achieve both the sample complexity similar to the CPE-MAB setting (which is nearly optimal for a subclass of problems) and polynomial running time per round. For Condorcet winner, we first design a fully polynomial time approximation scheme (FPTAS) for the offline problem of finding the Condorcet winner with known winning probabilities, and then use the FPTAS as an oracle to design a novel pure exploration algorithm CAR-Cond with sample complexity analysis. CAR-Cond is the first algorithm with polynomial running time per round for identifying the Condorcet winner in CPE-DB.
9:40 - 10:10郭晓熙
北京大学
题目: 多类型资源分配的机制设计
摘要: 资源分配问题是社会选择问题中的一个重要研究课题,一直以来受到经济学和计算机科学等多领域学者的共同关注。在近年来对该问题的研究和扩展中,多类型资源分配问题是其中的一个有前景的研究方向,它的优势在于考虑到了包含不同类型物品的物品组合的影响,更加贴近实际生活中的分配问题;而且,类型和物品组合这些概念的加入使得在研究多类型问题时不能简单地将问题拆分为多个单类型的问题进行解决,需要重新为多类型问题设计分配机制。本次报告将分享我们在多类型问题方面的研究进展,包括简要概括我们在研究中观察到的现象以及遇到的新挑战,介绍我们扩展或新提出的适用于多类型问题的分配机制和它们的性质,与参会嘉宾共同探讨资源分配问题研究的未来发展方向。
10:10 - 10:25茶歇
主持人:张智杰
10:25 - 10:55张乾坤
香港大学
题目: Online Primal Dual Meets Online Matching with Stochastic Rewards: Configuration LP to the Rescue
摘要: Mehta and Panigrahi (FOCS 2012) introduce the problem of online matching with stochastic rewards, where edges are associated with success probabilities and a match succeeds with the probability of the corresponding edge. It is one of the few online matching problems that have defied the randomized online primal dual framework by Devanur, Jain, and Kleinberg (SODA 2013) thus far. In this talk, I will present my recent work in STOC 2020, which unlocks the power of randomized online primal dual in online matching with stochastic rewards by employing the configuration linear program rather than the standard matching linear program used in previous works. Our main result is a 0.572 competitive algorithm for the case of vanishing and unequal probabilities, improving the best previous bound of 0.534 by Mehta, Waggoner, and Zadimoghaddam (SODA 2015) and, in fact, is even better than the best previous bound of 0.567 by Mehta and Panigrahi (FOCS 2012) for the more restricted case of vanishing and equal probabilities. For vanishing and equal probabilities, we get a better competitive ratio of 0.576. Our results further generalize to the vertex-weighted case due to the intrinsic robustness of the randomized online primal dual analysis.
10:55 - 11:25金耀南
哥伦比亚大学
题目: Tight Approximation Ratio of Anonymous Pricing
摘要: We study revenue maximization in two canonical Bayesian mechanism design settings. In the single-item setting, we prove that Anonymous Pricing approximates Myerson Auction by a factor of C2.62\mathcal{C}^* \approx 2.62. This improves the upper bound of e2.72e \approx 2.72 by Alaei et al. (GEB 2019) and matches with the lower bound by Jin et al. (SICOMP 2020). En route, new characterizations of Myerson Auction and distributions are discovered.
In the unit-demand single-buyer setting, we show that Uniform Pricing approximates the optimal deterministic mechanism by a factor of C\mathcal{C}^* and then give a matching lower-bound instance. This is by extending the {\em single-dimensional representative method} of Chawla et al. (EC 2007) and settles an open question asked first by Cai and Daskalakis (GEB 2015).
11:25 - 11:55廖超
上海交通大学
题目: Almost Tight Approximation Hardness for K-EC-DST
摘要: The k-EC-DST problem is an important variant of the classical directed Steiner tree problem. The instance is a directed graph G with a root vertex r, a set of vertices T called terminals and nonnegative edge costs. A feasible solution F is a subset of edges that for each terminal t in T, there are at least k edge-disjoint paths of F from r to t. The cost of F is the sum of the cost of edges in F. The problem is to find a feasible solution of minimum cost. For k > lTl, we obtained approximation hardness of lTl ^ (1-o(1)), which almost matches the straightforward approximation ratio lTl. For directed acyclic graphs with diameter L and k >= lTl, we obtained approximation hardness of k ^ L , which is close the state-of-the-art approximation ratio O(L k^{L-1} \log n). This is a joint work with Qingyun Chen, Bundit Laekhanukit and Yuhao Zhang.
12:00 - 14:00午休
主持人:张乾坤
14:00 - 14:30风维明
南京大学
题目: Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma
摘要: We give a Markov chain based algorithm for sampling almost uniform solutions of constraint satisfaction problems (CSPs). Assuming a canonical setting for the Lovász local lemma, where each constraint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate in a local lemma regime, and the running time is a fixed polynomial whose dependency on n is close to linear, where n is the number of variables. Our main approach is a new technique called state compression,  which generalizes the “mark/unmark” paradigm of Moitra [Moitra, JACM 2019], and can give fast local-lemma-based sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform samplers for hypergraph colorings and for CNF solutions.
14:30 - 15:00张智杰
中科院计算所
题目: Optimization from Structured Samples for Coverage and Influence Functions
摘要: We revisit the optimization from samples (OPS) model, which studies the problem of optimizing objective functions directly from the sample data. Previous results showed that we cannot obtain a constant approximation ratio for the maximum coverage problem using polynomial independent samples of the form (BRS, STOC17), even if coverage functions are -PMAC learnable using these samples (BDF+, SODA12). In this work, to circumvent the impossibility result of OPS, we propose a stronger model called optimization from structured samples (OPSS), where the data samples encode the structural information of the functions. We show that under OPSS model, the maximum coverage problem enjoys constant approximation under mild assumptions on the sample distribution. We further generalize the result and show that influence maximization also enjoys constant approximation under this model.
15:00 - 15:30杜宇轩
悉尼大学
题目: On exploring practical potentials of variational quantum algorithms with advantages
摘要: Quantum computers, as a new paradigm for computing, have experienced rapid advances in both hardware and software. A concrete milestone is Google’s quantum supremacy experiment on a 53-qubit superconducting quantum processor. With this regard, huge efforts have been made to apply noisy intermediate-scale quantum (NISQ) machines to accomplish practical tasks with computational advantages. Variational quantum algorithms (VQAs), which include quantum neural networks (QNNs) and variational quantum eigensolvers (VQEs), are promising candidates to achieve this goal. In this talk, we will first discuss the capabilities and limitations of VQAs in the view of optimization theory and learning theory. We will next exhibit a quantum architecture search scheme to automatically seek an optimal ansatz, which well balances the tradeoff between expressivity and trainability encountered in VQAs. Then, we will present an efficient measure to explicitly quantify the expressivity of VQAs, supported by a notion developed in statistical learning theory. Last, we will elaborate on the possibilities to use quantum kernels instead of QNNs to pursue computational merits in the NISQ era.
15:30 - 15:45茶歇
主持人:杜伊涵
15:45 - 16:15吕凯风
清华大学
题目: Gradient Descent on Homogeneous Neural Networks:Maximization and Simplicity Bias
摘要:The generalization mystery of overparametrized deep nets has motivated efforts to understand how gradient descent (GD) converges to low-loss solutions that generalize well. In this talk, we draw a connection between GD on homogeneous neural networks (including VGG-like CNNs without bias) and margin maximization. Our work suggests that GD may converge to the “max-margin” solution attaining the global optimum of the loss, which presumably generalizes well. We further look into gradient flow on finite two-layer Leaky ReLU nets trained on linearly separable and symmetric data and prove such convergence with global optimality of margin. The analysis also gives some theoretical justification for recent empirical findings on the so-called simplicity bias of GD towards linear or other “simple” classes of solutions. On the pessimistic side, we demonstrate via simple examples that in general global optimality of margin might not be easy to achieve due to non-convexity, but local optimality still makes sense.
Joint work with Jian Li, Zhiyuan Li, Runzhe Wang, Sanjeev Arora.
16:15 - 16:45余广
国防科技大学
题目: 基于人类感知的无监督视频异常事件检测框架
摘要: 视频异常检测旨在自动的检测视频中各类违反常规、值得注意的异常事件。现有的视频异常检测方法通常需要正常视频构建一个正常模型/分布。并且,虽然视频异常检测是一种源于人类主观感知的任务,现有方法并没有考虑到这种生物动机。为此,提出一种基于人类感知的无监督视频异常检测框架,其基于两个核心观察:1)人类的感知通常是局部的,即在感知异常时聚焦于局部前景及其周围环境。为此,我们借助通用知识提出一种精准全面的前景定位算法。同时,设计了一种高效的区域定位策略以充分利用局部环境信息。2)频繁发生的事件将会塑造人类对正常的定义,这启发我们设计一种理论支持的代理训练机制,其利用未标注的视频数据训练一个深度网络完成某种代理任务,频繁发生的事件将在深度网络的“塑造”中起主导作用。通过这种方式,正常和异常之间的训练误差间隙将会凸显罕见的事件为异常。此外,在框架中我们探索了各种代理任务和网络模型,验证了框架的广泛适用性和惊异的性能:其不仅远超无监督方法,同时能比肩或优于半监督方法。
16:45 - 17:15郑迥之
华中科技大学
题目: 结合强化学习和Lin-Kernighan-Helsgaun算法求解旅行商问题
摘要: 我们提出将强化学习与著名的启发式算法Lin–Kernighan–Helsgaun (LKH) 相结合以解决经典的旅行商问题(TSP)。所提出的算法显著改进了LKH算法的性能,为组合优化与强化学习的结合提供了新的思路。这一工作被AAAI 2021收录。
现有的应用强化学习解决TSP问题的方法或是应用强化学习改进启发式算法,或是应用深度强化学习直接解决TSP问题。但前者未能将强化学习与启发式算法的核心过程相结合,因此并无实质上的改进;后者因神经网络的复杂性限制,无法扩展到大规模TSP实例,且在小规模问题上结果也远不如优秀的启发式算法。对此,我们提出将强化学习与LKH算法的核心搜索过程相结合,以优化LKH算法的性能。
具体而言,我们通过强化学习算法使LKH的核心搜索邻域能够自适应地变化,从而加强算法对最优解的探索能力。我们尝试了蒙特卡洛(MC),Q–learning和Sarsa三种强化学习算法,并发现它们都能明显改进LKH算法,并且三者在解决不同TSP实例时具有互补性。因此,我们提出一种变策略强化学习算法(VSR–LKH),进一步优化了算法。
总之,所提出的VSR–LKH算法将三种强化学习算法(MC,Q–learning,Sarsa)与LKH的核心搜索过程相结合。我们在著名的数据集TSPLIB中的所有111个标准TSP实例上测试了VSR–LKH的性能,其中TSP城市数量最多可达在85900个。结果表明,所提出的算法显著增强了LKH算法。此外,这项工作验证了应用强化学习改进启发式算法的可行性,我们所提出的将强化学习与启发式核心搜索过程相结合的方法也可应用于优化其他的启发式算法
会议日程(2021/6/27)
主持人:肖鸣宇
8:50 - 9:00合作企业华为公司数据存储部部长讲话
主持人:白天
9:00 - 9:25陶冰琳
电子科技大学
题目: Network survivability and network protection
摘要:如今网络(network)设施很容易遭受外部故障(external failures)的破坏。例如地震和海啸等非策略影响(unintentional impact)以及炸弹爆炸、恐怖袭击等故意破坏(intentional impact)影响。还有在计算机网络中某个节点或者路由器的人为破坏从而导致网络中的非正常信息传输。一般而言,这几种网络故障或者攻击可能会导致巨大的财务损失并阻碍对受影响区域的有效恢复。在本报告中,我将介绍在少量故障和大规模故障发生情况下的这两种不同问题模型,并介绍自己在该方面的研究内容和成果。
9:25 - 9:50敬蒙蒙
电子科技大学
题目: 欠标注场景下机器学习问题的研究
摘要:传统的机器学习算法往往依赖于大量的带标注数据来训练模型。然而,标注大量的数据是一项耗时且昂贵的操作。在实际应用中,我们往往需要在欠标注的场景下开展机器学习任务。为了应对这个挑战,研究者们提出了域适配 (Domain Adaptation),它可以将知识从具有大量标注数据的相关的领域迁移到一个很少或者没有标注信息的领域。域适配适用于测试集的类别在训练时有数据但缺少标注的场景。对于一个更加极端的情况——无数据且无标注,零样本学习 (Zero-Shot Learning) 则更加适用。在零样本学习的设定中,训练集中的类别与测试集中的类别是不相交的,我们需要根据训练集中的可见类数据, 通过相关先验知识或辅助信息, 实现对测试集中未见类别的数据的分类和分割等。在这次讲座中,我们将会从域适配和零样本学习两个方面来介绍欠标注场景下的算法的研究。
9:50 - 10:15王壮
四川大学
题目: 近距空战飞行器引导的深度强化学习方法研究
摘要:军事作战正在向智能化方向发展,智能化空战是实现智能化军事作战的突破口。飞行器引导机动决策是空战的重要组成部分,研究智能机动决策对空战的智能化演进有重要意义。深度强化学习方法具备不需要精确建模、不依赖海量数据、响应快速等特点,在解决飞行器引导机动决策问题上具有优势。报告以近距空战中的飞行器引导为应用背景,以深度强化学习技术为智能化手段,对近距空战中的飞行器引导智能机动决策、一对一近距空战博弈飞行器智能机动决策等关键技术进行研究,具有重要的理论意义和实践价值。
10:15 - 10:40王旭
四川大学
题目: 面向跨模态检索与分类的多视图神经网络学习方法
摘要:模态是人类认知和理解环境的形式,通常由多媒体数据或多源传感器数据作为媒介传递。随着互联网多媒体技术以及人工智能技术的快速发展,使得多模态学习逐渐成为机器学习领域中的研究热点。跨模态内容理解作为其中的一个关键研究问题,旨在通过模拟人类大脑认知机理,实现多模态间的语义理解和信息关联,在个人生活、社会发展乃至国家战略方面都有着至关重要的研究意义和应用价值。本报告围绕不同监督模式下跨模态内容理解的研究难点,简要介绍了跨模态检索与分类任务中的几个科学问题,同时介绍了所提出的一系列不同监督模式下的多视图神经网络学习方法,这些方法在不同监督模式下取得了较好效果。
10:40-10:55茶歇
主持人:马梦帆
10:55-11:20张熠玲
西南交通大学
题目: 终身学习场景下的聚类分析研究
摘要: 聚类分析作为无监督学习的代表性方法之一,旨在挖掘数据样本间的特征关联,从而获得有效的数据划分。终身学习是指机器学习算法能够模仿人类的学习模式、自我激励,不断地学习新的任务,同时能够累积从之前任务中学习到的知识。为了提升无监督学习(尤其是聚类分析)的性能,使其进一步智能化,终身学习与无监督学习结合的研究方向亟待探索。我们主要尝试解决以下两个挑战:1)如何挖掘任务间的共享知识?与多任务学习类似,终身聚类分析需要提取任务间充分有效的信息以及任务间的关联性。2)如何学习并迁移已累积的知识到后续任务中?终身学习的任务数目往往是无穷的,因此,从已学习任务中存储有效知识并迁移这些知识到新任务中是有必要的,可以有效避免重复访问过去任务的原始数据。
11:20 - 11:45周威
西南交通大学
题目: 基于多视图和多任务方法的时空数据挖掘
摘要:时空序列数据因具有复杂的动态性、不确定性、时空关联性以及多变量特征相关性等,近年来成为了众多学者关注的研究热点。而时空数据挖掘目前主要存在的挑战包括以下两个方面:1)如何根据时空序列数据的特性,充分挖掘有效特征?2)如何针对特定应用场景,设计面向时空序列学习的深度学习模型?为了解决上述挑战,本研究一方面结合多视图学习实现时空数据的特征融合、模型融合等不同层次的融合方法,设计面向时空数据的多视图深度学习模型;另一方面,基于多任务学习理论,探索跨任务知识共享,挖掘任务间的一致性与差异性特征,从而提出面向时空数据的多任务深度学习模型;此外,为充分分析时空数据的拓扑结构,以图神经网络为基础架构,构建面向时空数据的新型图神经网络模型。
11:45 - 12:10郭昱宇
电子科技大学
题目: 视觉内容的结构化理解
摘要:视觉内容的理解一直以来是计算机视觉领域内的研究重点,设计并提出有效的方式去表示视觉内容就成为了该领域的必然需求。本次报告重点在于以何种方式表示视觉内容以及如何设计有效的模型去生成这种表示。针对表示方式,本次报告介绍两种结构化的表示方式:序列(自然语言)和图(场景图)。针对模型设计,本次报告从上述两种表示出发介绍报告者近期的工作。
12:20 - 13:20午餐(芙蓉餐厅)

报告人个人简介

Yihan Du is currently a third-year Ph.D. student in the Institute for Interdisciplinary Information Sciences at Tsinghua University, advised by Prof. Longbo Huang. She received her Bachelor’s degree in Computer Science from Xiamen University in 2018. She was also a research intern at the Theory Group of Microsoft Research Asia in January-May 2020, mentored by Dr. Wei Chen. Her research interests are online learning and bandit theory. In particular, her research focuses on algorithm design and theoretical analysis for combinatorial pure exploration of bandits, dueling bandits and risk-aware bandits.
郭晓熙,北京大学2018级博士研究生,于信息科学技术学院形式化方法课题组进行研究学习,导师为曹永知教授。目前在CCF目录B类期刊AAMAS发表论文1篇,另有参与合作论文2篇。
Qiankun Zhang is now a final-year Ph.D. candidate in theoretical computer science at the University of Hong Kong under Zhiyi Huang. Before that, Qiankun got a bachelor degree from Chu Kochen Honors College at Zhejiang University under Guochuan Zhang in 2017. His research is about online algorithms.
Yaonan Jin is a second year PhD student in Columbia, advised by Prof. Xi Chen and Prof. Rocco Servedio. Previously, he got his Master degree from HKUST and his Bachelor degree from SJTU.
His research interests span various topics in algorithmic game theory and mechanism design.
Chao Liao is a phd candidate at Shanghai Jiao Tong University since 2016, advised by Prof. Yong Yu and Prof. Pinyan Lu. He is going to join the TCS Laboratory of Huawei. He has a broad interest in theoretical computer science and its applications. Previously his work was focused on approximate counting and sampling. He was an MSRA fellowship winner of 2019.
凤维明,南京大学博士生,导师为尹一通教授,研究方向为随机算法和分布式图算法,研究成果发表于SICOMP,STOC,SODA,PODC等期刊和会议。
Zhijie Zhang is currently a fourth-year Ph.D student at Institute of Computing Technology, Chinese Academy of Sciences (ICT, CAS), under supervision of Prof. Jialin Zhang. He is broadly interested in combinatorial optimization, the design of approximation algorithms and learning algorithms. His recent research topics include submodular maximization and influence maximization.
Yuxuan Du got his Ph.D. degree in the School of computer science, The University of Sydney. His research interest mainly focuses on quantum machine learning, including but not limited to the novel NISQ algorithm design and the theoretical analysis for the capabilities and limitations of quantum learning models.
Kaifeng Lyu is a 2nd year PhD student (Tsinghua -> Princeton). His research interest lies in finding theoretical explanations for the various mysteries in deep learning. Previously, Kaifeng Lyu received B.Eng from Yao Class at Tsinghua University in 2019.
余广,国防科技大学2018级硕博连读生在读,主要研究方向和兴趣为深度异常检测、无监督/半监督学习、视频异常事件检测等,目前发表和在投CCF A类国际会议和期刊4篇。
郑迥之,华中科技大学计算机学院2020级博士研究生。以第一作者在AAAI 2021发表文章一篇。主要研究方向是组合优化及其与强化学习的结合。
陶冰琳,电子科技大学计算机学院2018级博士研究生,师从肖鸣宇教授。以第一作者在AAAI20,AAMAS等发表论文,其中合作论文一篇。主要研究方向:网络生存性、鲁棒性,图算法,组合优化等。
敬蒙蒙,电子科技大学计算机科学与工程学院(网络空间安全学院)2018级博士研究生,中共党员,师从赵继东老师,连续两年获得博士生国家奖学金。敬蒙蒙的主要研究方向是迁移学习中的域适配及零样本学习等。攻读博士学位期间,敬蒙蒙共发表学术论文15篇,全部是CCF推荐或SCI检索的论文,包括CCF-A类顶级会议论文6篇(CVPR,AAAI,ACM Multimedia等),SCI一区论文6篇(TIP,TCYB,TKDE,NN,PR等),CCF-B类会议论文2篇(DASFAA, ICME),CCF-C类会议论文1篇 (IJCNN)。
王壮,分别于2009年和2012年获得天津大学本科和硕士学位,2017年至今在四川大学计算机学院攻读软件工程博士学位。研究方向包括:军事人工智能、智能决策生成技术和深度强化学习等。攻读博士期间参与多项国防项目,发表SCI论文数篇并获得多项国家发明专利的授权。
王旭,四川大学计算机学院2017级博士研究生,2015年7月本科毕业于四川大学软件学院软件工程专业并获工学学士学位,2019年9月至2021年3月由中国国家留学基金委公派于澳大利亚阿德莱德大学/澳大利亚机器学习研究所进行博士联合培养。研究兴趣包括机器学习、多模态学习、领域自适应等。主要成果发表于中科院1区期刊IEEE TCYB、Information Sciences等和CCF A类会议ACM MM、CVPR上。曾多次担任IJCAI、ACM MM、TCYB、TNNLS、IEEE RAL等期刊和会议审稿人。
张熠玲,西南交通大学计算机与人工智能学院,博士四年级。主要从事多任务学习、多视图学习、深度学习、聚类分析、时空数据挖掘等方向的研究。在国际期刊与学术会议上以第一作者发表论文4篇,申请国家发明专利3项。第一作者论文入选2020ESI高被引论文,第一作者论文获得最佳论文奖,曾获2020年西南交通大学“平志奖学金”,2019年西南交通大学拔尖创新人才,2018年“华为奖学金”。
周威,西南交通大学计算机与人工智能学院,博士四年级。主要从事多视图学习、多任务学习、深度学习、聚类分析、时空数据挖掘等方向的研究。在国际期刊与学术会议上以第一作者发表论文2篇,申请国家发明专利2项。
郭昱宇在博士期间主要从事计算机视觉和自然语言处理交叉领域的研究,包括场景图生成和视觉描述生成算法的研究。目前已经在国际主流的期刊或者会议上发表学术论文5篇,其中CCF A或者JCR二区以上的高水平论文占其中的4篇,包括人工智能领域内高影响因子的顶级期刊IEEE Transactions on Neural Networks and Learning Systems (JCR一区,IF=8.8),IEEE Transactions on Cybernetics (JCR一区,IF=11.1),还有多媒体领域的顶级学术会议ACM Multimedia(CCF A)。
距离开始还有
NaN
Days
:
NaN
Hours
:
NaN
Minutes
:
NaN
Seconds