
Regular games:
A playground for exponential time algorithms

Bakh Khoussainov

Computer Science Department, The UESTC, China

Joint with Zihui Liang and Mingyu Xiao
(UESTC, Chengdu, China)

July 17, 2024

1 / 26

Bakh Khoussainov Regular games: A playground for exponential time algorithms



Plan

Regular games: basic definitions
The sizes and parameters of the games
Our results on

Coloured Muller games
Rabin and Streett games
Muller games
McNaughton games

For the paper see Archives:
Deciding regular games:
A playground for exponential time algorithms

2 / 26

Bakh Khoussainov Regular games: A playground for exponential time algorithms



Arenas and plays

Definition
An arena A is a bipartite directed graph (V0,V1,E), where

1 V0 ∩ V1 = ∅, and V = V0 ∪ V1 is the set of positions.
2 E ⊆ V0 × V1 ∪ V1 × V0 is the edge set where each node

has an outgoing edge.
3 V0 and V1 are positions for Player 0 and Player 1.

3 / 26

Bakh Khoussainov Regular games: A playground for exponential time algorithms



Plays

Given a token initially placed on a position v , players move the
token in turn along the edges. This produces a path.

Definition
Let A be an arena. A play starting at v0 ∈ V , is an infinite
sequence ρ = v0, v1, v2, . . . such that vi+1 ∈ E(vi) for all i ∈ N.
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Recurring states in plays

Given a play ρ = v0, v1, . . ., the set

Inf(ρ) = {v ∈ V | ∃ω i(vi = v)}

is called the infinity set of ρ.

The winner of ρ is determined by a condition put on Inf(ρ).

We list several well-established winning conditions.
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Colored Muller, Rabin, Streett conditions

A coloured Muller game is G = (A, c, (F0,F1)), where
c : V → C, F0 ∪ F1 = 2C and F0 ∩ F1 = ∅. The sets F0
and F1 are winning conditions. Player σ wins the play ρ
if c(Inf(ρ)) ∈ Fσ, where σ = 0,1.

A Rabin game is the tuple G = (A, (U1,V1), . . . , (Uk ,Vk )),
where Ui ,Vi ⊆ V , (Ui ,Vi) is a winning pair, and k is the
index. Player 0 wins ρ if there is a pair (Ui ,Vi) with
Inf(ρ) ∩ Ui ̸= ∅ and Inf(ρ) ∩ Vi = ∅. Else, Player 1 wins.

A Streett game is the tuple G = (A, (U1,V1), . . . , (Uk ,Vk )),
where Ui , Vi are as in Rabin game. Player 0 wins ρ if for
all i ∈ {1, . . . , k} if Inf(ρ) ∩ Ui ̸= ∅ then Inf(ρ) ∩ Vi ̸= ∅.
Otherwise, Player 1 wins.
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McNaughoton and Muller conditions

A McNaughton game is the tuple G = (A,W , (F0,F1)),
where W ⊆ V , F0 ∪ F1 = 2W and F0 ∩ F1 = ∅. Player σ
wins the play ρ if Inf(ρ) ∩ W ∈ Fσ.

A Muller game is the tuple G = (A, (F0,F1)), where
F0 ∪ F1 = 2V and F0 ∩ F1 = ∅. Player σ wins the play ρ if
Inf(ρ) ∈ Fσ.
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Sizes and parameters of games

There are two ways to compute the size of G:
1 The size of G is |V |+ |E |.
2 The size of G is |V |+ |E |+ |Winning condition|:

1 The sizes of Muller, McNaughton, and coloured Muller
games are bounded by |V |+ |E |+ 2|V | · |V |.

2 The sizes of Rabin and Streett games are bounded by
|V |+ |E |+ 4|V | · |V |.

The small parameters are |C| and |W |.
The large parameter is k .
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Solving regular games

Theorem (Determinacy Theorem, folklore)
The set of positions of the game G can be partitioned into W0
and W1 such that:

1 x ∈ W0 iff Player 0 wins G starting at x.
2 y ∈ W1 iff Player 1 wins G starting at y.

Solving a game has two objectives:

Objective 1. Given G compute W0 and W1.
Let us call this the decision problem.

Objective 2. Extract winning strategies for the winners.

We focus on the decision problem.

9 / 26

Bakh Khoussainov Regular games: A playground for exponential time algorithms



Our results: colored Muller games

A coloured Muller game is G = (A, c, (F0,F1)), where
c : V → C, F0 ∪ F1 = 2C and F0 ∩ F1 = ∅. Player σ wins the
play ρ if c(Inf(ρ)) ∈ Fσ.

Best known (running time, space):
(O(|C|5|C| · |V |5),O((|C|!|V |)O(1)))
(STOC 2017, Calude, Jain, Khoussainov, Stephan, Li)
(O(|C||E |(|C||V |)|C|−1),O(|G|+ |C||V |))
(folklore)

Our results (running time, space)
(O(2|V ||C||E |), O(|G|+ 2|V ||V |)) (DP)
(O(2|V ||V ||E |), O(|G|+ 2|V |)) (DP)

(O(|C|!
(|V |
|C|

)
|V ||E |), O(|G|+ |C||V |)) (Recursion)
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Comments:

If |V |/ log log(n) ≤ |C|, then for the DP algorithms we have:
1 Run times are better than O(|C|5|C| · |V |5).
2 The running times strengthen the impossibility result that

under the ETH colored Muller games cannot be in
2o(|C|·log(|C|))Poly(|V |).

3 The spaces are better than O((|C|!|V |)O(1)).
4 All of the previous algorithms run in superexponential

times. Our algorithms are in EXP.
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Example

Figure: The values of |C| and the ETH
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Our results: Rabin and Streett games

A Rabin game is the tuple G = (A, (U1,V1), . . . , (Uk ,Vk )).
Player 0 wins ρ if there is a pair (Ui ,Vi) with Inf(ρ) ∩ Ui ̸= ∅ and
Inf(ρ) ∩ Vi = ∅. Else, Player 1 wins.

Best known (running time, space):
(O(|E ||V |k+1kk !), O(|G|+ k |V |))
(N. Piterman and A. Pnuelli LICS 2006)
(Õ(|E ||V |(k !)1+o(1)), O(|G|+ k |V | log k log |V |))
(R. Majumdar et al. 2024)

Our results (running time, space):
(O((k |V |+ 2|V ||E |)|V |), O(|G|+ 2|V ||V |) (DP)
(O(|V |!|V |(|E |+ k |V |)), O(|G|+ |V |2)) (Recursion)
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Comments:

1 In terms of time, both our DP and recursive algorithms are
better when k ∈ [|V |,4|V |].

2 We refine the impossibility result of A. Casares et al.
(SOSA 2024) under the assumption of the ETH. When
k ≥ |V | log |V |, both algorithms run in 2o(k log k)Poly(|V |).

3 Our DP algorithm is the first exponential time algorithm
that decides Rabin games.

4 When k ∈ [|V |,4|V |], then the recursive algorithm performs
the best in terms of space against other algorithms.
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Our results: Muller games

A Muller game is the tuple G = (A, (F0,F1)), where
F0 ∪ F1 = 2V and F0 ∩ F1 = ∅. Player σ wins ρ if Inf(ρ) ∈ Fσ.

Best known (running time, space):
(O(|F0| · (|V |+ |F0|) · |V0| log |V0|),O(|G|+ |F0|(|V |+ |F0|)))
(B. Khoussainov, Z. Liang, and M. Xiao ESA 2023)

Our results (running time, space):
(O(2|V ||V ||E |),O(|G|+ 2|V |))

Our algorithm becomes competitive (or better) than the state of
the art when |F0| >

√
2|V |.
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Our results: McNaughton games

A McNaughton game is the tuple G = (A,W , (F0,F1)),
where W ⊆ V , F0 ∪ F1 = 2W and F0 ∩ F1 = ∅

Best known (running time, space):
(O(|W ||E ||W |!),O(|G|+ Poly(|V |)))
(folklore, e.g., see
McNaughton APAL 1993, Nerode et al APAL 1996)

Our results (running time, space):
(O(2|V ||W ||E |),O(|G|+ 2|V ||V |)) (DP)
(O(2|V ||V ||E |),O(|G|+ 2|V |)) (DP)

When |W | ≥ |V |/ log log(n), then our algorithm has
asymptotically better running time.
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Why do we have such improvements?

1 Most algorithms involve parameters such as C, W , and k .
These connections make the algorithms complex.

2 When |C|, |W |, and k move from very small to reasonable,
the run times of the algorithms become unreasonable (that
involve |C||C|, |C|!, |W |!, (k !)1+o(1), |V |k , etc).

3 Hence, it is better to run algorithms that go through all
subsets of the arena resulting in exponential bounds.

4 Even when one runs through the subsets of the arenas, a
non-trivial technical work needs to be done.
This is explained in the next few slides.
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Full win

Definition

If Winσ(G) = V , then player σ fully wins G. Else, the player
does not fully win G. If Winσ(G) ̸= V and Winσ̄(G) ̸= V , then
no player fully wins G.
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Attractors

Let X ⊂ V and let us fix Player σ.

The attractor of X for Player σ is the collection of all positions x
from which Player σ can force the token into X .

We denote this set of positions by

Attrσ(X ,A).
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Full win lemma for colored Muller games

Lemma

Let σ ∈ {0,1} such that c(V ) ∈ Fσ. Then:
1 If for all c′ ∈ c(V ), Attrσ(c−1(c′),A) = V or Player σ fully

wins G(V \ Attrσ(c−1(c′),A)), then Player σ fully wins G.
2 Else, let c′ ∈ C be such that Attrσ(c−1(c′),A) ̸= V and

Player σ doesn’t fully win G(V \ Attrσ(c−1(c′),A)).
Then Winσ(G) = Winσ(G(V \ X )), where
X = Attrσ̄(Winσ̄(G(V \ Attrσ(c−1(c′),A))),A).

Corollary

Assume that c(V ) ∈ Fσ. Player σ fully wins G iff for all
c′ ∈ c(V ), Attrσ(c−1(c′),A) = V or Player σ fully wins
G(V \ Attrσ(c−1(c′),A)).
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Trichotomy Lemma for colored Muller game

Lemma (Trichotomy Lemma)

Let σ ∈ {0,1} be such that c(V ) ∈ Fσ. Then:
1 If for all c′ ∈ c(V ), Attrσ(c−1(c′),A) = V or Player σ fully

wins G(V \ Attrσ(c−1(c′),A)), then Player σ fully wins G.
2 Otherwise, if for all v ∈ V, Attrσ̄({v},A) = V or Player σ̄

fully wins G(V \ Attrσ̄({v},A)), then Player σ̄ fully wins G.
3 Otherwise, none of the players fully wins.

This lemma is used for our dynamic programming algorithms.
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Enumeration Lemma

Lemma (Enumeration Lemma)

Given the set S = {V1, . . . ,Vk} be subsets of V , where n = |V |.
Then the collection

2V1 ∪ . . . ∪ 2Vk

can be enumerated in time O(2nn) and space O(2n).

The obvious algorithm runs in O(2nk). The lemma removes
dependence on k .
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KL winning condition

A KL game is the tuple G = (A, (u1,S1), . . . , (ut ,St)),
where ui ∈ V , Si ⊆ V , (ui ,Si) is a winning pair, and t is
the index. Player 0 wins ρ if there is a pair (ui ,Si) such
that ui ∈ Inf(ρ) and Inf(ρ) ⊆ Si . Else, Player 1 wins.

The size of the games with KL condition is bounded by
|V |+ |E |+ 2|V | · |V |2.
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From KL condition to Muller condition

Theorem
There is a transformation from KL games G to Muller games G′

that takes O(2|V ||V |2) time and O(|G|+ 2|V |) space. Hence,
there exists an algorithm that, given a KL game G, decides G in
O(2|V ||V ||E |) time and O(|G|+ 2|V |) space.
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From Rabin to KL condition

Theorem
There is a transformation from Rabin games G to KL games
that takes time O(k |V |2) and space O(|G|+ 2|V ||V |). Hence,
there exist algorithms that decide Rabin and Streett games G in
O((k |V |+ 2|V ||E |)|V |) time and O(|G|+ 2|V ||V |) space.
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Open questions

1. Muller games can be decided in Polynomial time. Can we
decide McNaughton games in polynomial time?

2. Are there exponential time algorithms that decide coloured
Muller games when the parameter |C| ranges in the interval
[
√
|V |, |V |/a], where a > 1.

3. Can we replace the factor 2|V | with 2|W | in the running time
that decides McNaughton games? If this can be done, then one
implies that the ETH is not applicable to McNaughton games as
opposed to coloured Muller games and Rabin games.
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